
Lecture 6. 



What is Thread?

A thread is a flow of execution through the process code, with its own program 
counter that keeps track of which instruction to execute next, system registers 
which hold its current working variables, and a stack which contains the execution 
history.

A thread shares with its peer threads few information like code segment, data 
segment and open files. When one thread alters a code segment memory item, all 
other threads see that.



A thread is also called a lightweight process. Threads provide a way to improve 
application performance through parallelism. Threads represent a software approach 
to improving performance of operating system by reducing the overhead thread is 
equivalent to a classical process.

Each thread belongs to exactly one process and no thread can exist outside a 
process. Each thread represents a separate flow of control. Threads have been 
successfully used in implementing network servers and web server. They also provide 
a suitable foundation for parallel execution of applications on shared memory 
multiprocessors.





Difference between Process and Thread

S.N. Process Thread

1 Process is heavy weight or 
resource intensive.

Thread is light weight, taking 
lesser resources than a 
process.

2 Process switching needs 
interaction with operating system.

Thread switching does not 
need to interact with operating 
system.

3 In multiple processing 
environments, each process 
executes the same code but has 
its own memory and file resources.

All threads can share same 
set of open files, child 
processes.



4 If one process is blocked, then no 
other process can execute until 
the first process is unblocked.

While one thread is blocked 
and waiting, a second thread in 
the same task can run.

5 Multiple processes without using 
threads use more resources.

Multiple threaded processes 
use fewer resources.

6 In multiple processes each 
process operates independently of 
the others.

One thread can read, write or 
change another thread's data.



Advantages of Thread
● Threads minimize the context switching time.
● Use of threads provides concurrency within a process.
● Efficient communication.
● It is more economical to create and context switch threads.
● Threads allow utilization of multiprocessor architectures to a greater scale and 

efficiency.



Types of Thread

Threads are implemented in following two ways −

● User Level Threads − User managed threads.
● Kernel Level Threads − Operating System managed threads acting on kernel, 

an operating system core.



User Level Threads

In this case, the thread management kernel is not aware of the existence of 
threads. The thread library contains code for creating and destroying threads, for 
passing message and data between threads, for scheduling thread execution and 
for saving and restoring thread contexts. The application starts with a single 
thread.





User Level Threads: Advantages and Disadvantages

Advantages
● Thread switching does not require Kernel mode privileges.
● User level thread can run on any operating system.
● Scheduling can be application specific in the user level thread.
● User level threads are fast to create and manage.

Disadvantages
● In a typical operating system, most system calls are blocking.
● Multithreaded application cannot take advantage of multiprocessing.



Kernel Level Threads

In this case, thread management is done by the Kernel. There is no thread 
management code in the application area. Kernel threads are supported directly by the 
operating system. Any application can be programmed to be multithreaded. All of the 
threads within an application are supported within a single process.

The Kernel maintains context information for the process as a whole and for 
individuals threads within the process. Scheduling by the Kernel is done on a thread 
basis. The Kernel performs thread creation, scheduling and management in Kernel 
space. Kernel threads are generally slower to create and manage than the user 
threads.



Kernel Level Threads: Advantages and Disadvantages

Advantages
● Kernel can simultaneously schedule multiple threads from the same process on multiple 

processes.
● If one thread in a process is blocked, the Kernel can schedule another thread of the same 

process.
● Kernel routines themselves can be multithreaded.

Disadvantages
● Kernel threads are generally slower to create and manage than the user threads.
● Transfer of control from one thread to another within the same process requires a mode 

switch to the Kernel.



Multithreading Models

Some operating system provide a combined user level thread and Kernel level 
thread facility. Solaris is a good example of this combined approach. In a 
combined system, multiple threads within the same application can run in parallel 
on multiple processors and a blocking system call need not block the entire 
process. Multithreading models are three types

● Many to many relationship.
● Many to one relationship.
● One to one relationship.



Thank you for your attention!


